孫同學(xué)
2022-03-14 19:54老師好,市場(chǎng)百題34,我覺(jué)著可以這樣理解吧,按照我貼的圖,隨著C-level的增大,非拒絕域越來(lái)越窄,說(shuō)明越來(lái)越容易拒絕原假設(shè),所以99%的比95%更容易犯第一類錯(cuò)誤,拒真的錯(cuò)誤,所以選項(xiàng)A,99%的Var比95%的var更不可靠可以算正確。我的這種想法與主講老師的講法相反,主講老師的講法是說(shuō)99%犯第二類錯(cuò)誤的可能性更大,不知道我的理解算不算對(duì)?
所屬:FRM Part II > Market Risk Measurement and Management 視頻位置 相關(guān)試題
來(lái)源: 視頻位置 相關(guān)試題
1個(gè)回答
Yvonne助教
2022-03-15 09:26
該回答已被題主采納
同學(xué)你好,不是這樣理解的,百題第34題說(shuō)的不是kupiec回測(cè),這這里考察的是理解VaR的置信水平以及驗(yàn)證過(guò)程的置信水平之間的差距,并且他們?nèi)绾斡绊懕舜恕@庵凳欠恼龖B(tài)分布的,對(duì)于二項(xiàng)分布而言,利用95%的VaR值置信水平計(jì)算的方差是要大于99%的方差(n*0.95*0.05>n*0.99*0.01),因此從例外值的分布來(lái)看,雙尾的99%的VaR會(huì)比雙尾95%的VaR有更窄的非拒絕域(μ±z*σ),而例外值盡管服從正態(tài)分布但是它的值一定是大于零的,因此左側(cè)小于0的數(shù)應(yīng)該都是等于0的。因此左側(cè)小于0的象限99%的VaR會(huì)比95%的VaR有更寬的拒絕域,但是這里都按照0處理了,如果例外值等于0,回測(cè)是不會(huì)拒絕原假設(shè)的,因此這里就是犯了二類錯(cuò)誤(本該拒絕卻接受),所以99%的置信水平有更低的power of test。
