1個回答
Jenny助教
2022-04-20 18:15
該回答已被題主采納
同學你好,可以具體說一下是哪個地方,比如題干或者某個選項不理解嗎?這樣可以更有針對性的幫你解答。
感謝正在備考中乘風破浪的您來提問~如果您對回復滿意可【點贊】鼓勵您和Jenny更加優(yōu)秀,您的聲音是我們前進的動力,祝您生活與學習愉快!~
-
追問
第二、四句
-
追答
題目問的是哪個陳述跟完全共線性有關,II這里只是使用虛擬變量來描述holiday variation這個變量,和完全共線性無關。不是能看到虛擬變量,就把它當作完全共線性,虛擬變量本身并不必然意味著完全共線性。跟完全共線性有關的是虛擬變量陷阱。
虛擬變量陷阱是指一般在引入虛擬變量時要求如果有m個定性變量,在模型中引入m-1個虛擬變量。對于季度來說,一年有四個季度,假如D1表示第一季度,D2表示第二季度,D3表示第三季度,那么D4 就等于1-D1-D2-D3。這和它們的取值是0或1 是不矛盾的,現(xiàn)實是不可能出現(xiàn)既是第三季度,又是第二季度。比如現(xiàn)在是第二季度,D2=1,其他的變量就是都是0,包括D4. 假設D4也包含在模型里,那么變量之間就存在完全共線性。
另外,這里再對虛擬變量陷阱進行展開一下,這部分的解釋會有些超綱,會涉及到矩陣和線性代數(shù)方面的內容,所以這部分會簡單略過不展開。大概了解一下就可以了。
主要是記結論,即如果有截距項的情況下,只能引入m-1個虛擬變量,否則會導致虛擬變量陷阱。像IV這里,包含每一個季度還有截距項的,就會存在完全共線性,會引起虛擬變量陷阱的問題。
假設y是因變量,自變量有C1、C2、C3。在有截距項b時,回歸模型為:
y=a1×C1+a2×C2+a3×C3+b
按上圖中的虛擬變量設置,用OLS(ordinary least squares)求解方程的時候,模型解為
[a1,a2,a3,b]’=invert((X’X))X’Y,
當有截距項b的并用時候,用上述公式求解模型就會遇到“虛擬變量陷阱”,也就是矩陣X’X是不可逆的(因為矩陣并不是滿秩的)。簡單來說就是完全多重共線性(即其中一個自變量可以完全由另外兩個自變量決定)導致OLS算法中矩陣不可逆。從而無法計算回歸模型的系數(shù)(“虛擬變量陷阱”是和回歸模型的求解算法有關的,上述的OLS的閉式解會報錯)。如果去掉截距項,這個矩陣是滿秩的,也就是各列向量并不是線性相關。故此時,沒有共線性的問題,那么就可以計算出回歸模型的系數(shù)。
