138****4518
2023-01-07 21:19第一題的b選項是否因為TPI(p)大于TPI(m)可以得出E(Rp)大于E(Rm)或者beta(p)<beta(m)=1,從而JPI的公式中得出是正數呢 d選項beta是小于1的話為什么不對呢
可以通過題干得到beta的比較大小嗎,并且如果小于1,那就是lending,題目中說not borrowing不可以等價嗎? 一共兩個問題,麻煩老師幫忙解答,謝謝~
所屬:FRM Part I > Foundations of Risk Management 視頻位置 相關試題
來源: 視頻位置 相關試題
1個回答
Lucia助教
2023-01-12 09:49
該回答已被題主采納
同學你好,
1、不能通過你的方法來判斷alpha是否大于0,以及無法判斷β是否大于1
2、不能通過β是否大于1來判斷是否lending,有的組合本身沒有使用杠桿,但是β也可能很高,并不是說lending了β就會大于1.
這道題解題思路還是判斷SR,TR,兩個比率分子都是一樣的,如果是充分分散化的組合,那么說明SR=TR,但是這里不相等,說明分母是不相同的,那么說明沒有充分分散化
-------------------
學而時習之,不亦說乎??【點贊】鼓勵自己更加優(yōu)秀,您的聲音是我們前進的源動力,祝您生活與學習愉快!~
-
追問
為什么充分分散化的話,這兩個值會相等呢?然后題目中不是都分別與兩指標的市場指標做比較嗎,為什么要直接sp和tp做比較呢(這兩個指標大于等于小于時分別說明了怎樣的情況呢)?此外,1中的答案里alpha大于0這個是怎么看出來的呢?謝謝老師,麻煩解答一下這四個疑問
-
追答
同學你好,這里是和市場比較,但是我們沒辦法知道市場的SR,TR到底是多少,題目沒有給出來。所以我們就將SR,和TR進行比較,TR比市場表現好,SR比市場表現差,那么表明TR比SR要大,這里是針對同一個組合而言的,分子都是Rp-Rm,分母分別為σ和β,那么說明β小于σ,那么這個組合是沒有充分分散化的。
感謝乘風破浪的你前來學習~【點贊】??表示你對我們答疑服務的支持哦
