歡同學
2023-09-27 17:42這題為啥不是看99%的顯著性水平低,所以一類錯誤概率低,這樣
所屬:FRM Part II > Market Risk Measurement and Management 視頻位置 相關試題
來源: 視頻位置 相關試題
1個回答
黃石助教
2023-09-28 10:29
該回答已被題主采納
同學你好。這邊假設檢驗的顯著性水平與VaR的顯著性水平是要分開來看的。我們討論的一類、二類錯誤以及testing power都是在討論對VaR值做的假設檢驗,而不是看VaR值本身的顯著性水平。
-
追問
不太懂,VAR的置信區(qū)間跟假設檢驗的置信區(qū)間的關系,麻煩老師相信講講。
解析中說“雙尾的99%的VaR會比雙尾95%的VaR有更窄的非拒絕域”,都99%了, 置信區(qū)間那么高,顯著性區(qū)間總共才1%怎么會比95%對應的非拒絕域更窄? -
追答
同學你好。VaR的置信區(qū)間是在設立VaR模型時設定的,一般多受到Basel Committee的影響(比如市場風險用99% VaR,信用風險用99.9% VaR等);假設檢驗的置信區(qū)間則是在檢驗VaR模型是否正確時設定的,二者之間并無關系,一個是針對VaR模型的設立,一個是VaR模型的回測。
解析中的意思是,在相同的假設檢驗置信水平下,對于95% VaR做檢驗的非拒絕域較99% VaR的非拒絕域更寬,這可由下表中看出。以99% VaR & 252天為例:此時非拒絕域為N < 7,意為若exceptions < 7則不拒絕原假設(VaR模型正確)。此處的問題是,N若過大,VaR模型低估風險、應拒絕原假設;N若過小,VaR模型高估風險、也應拒絕原假設,而非拒絕域N < 7意味著即使N過小,我們也不會拒絕錯誤的模型。因此,power of test較低。溯其本源,這是因為VaR的置信水平過高導致幾乎很難出現(xiàn)比VaR值還高的損失,這使得我們無法判斷過小的N究竟意味著模型高估了風險還是模型本無誤。
