嘻同學(xué)
2023-12-23 08:55Parametric & nonparametric tests
這個(gè)問題里說的是非正態(tài)小樣本,那如果是n>= 30 的非正態(tài)大樣本呢?兩種Parametric & nonparametric tests 就都可以用了嗎?決定用哪種的決定性條件是什么?
所屬:CFA Level I > Quantitative Methods 視頻位置 相關(guān)試題
來源: 視頻位置 相關(guān)試題
1個(gè)回答
Evian, CFA助教
2023-12-25 16:37
該回答已被題主采納
ヾ(?°?°?)??你好同學(xué),
如果是n>= 30 的非正態(tài)大樣本,可以用參數(shù)檢驗(yàn)的t檢驗(yàn),此時(shí)的假設(shè)是樣本均值服從正態(tài)分布。
除了參數(shù)檢驗(yàn),我們可以不做任何假設(shè)繼續(xù)用非參數(shù)檢驗(yàn)(不考慮參數(shù)、不需要假設(shè))。就是你說的兩種Parametric & nonparametric tests 都可以用
決定用哪種的決定性條件是:1.是否有參數(shù) 2.是否有假設(shè)。例如,1.有均值和方差這兩個(gè)參數(shù)我們就可以去定義分布,2.或者我們直接假設(shè)總體服從正態(tài)分布
在數(shù)據(jù)分析過程中,由于種種原因,人們往往無法對(duì)總體分布形態(tài)作簡單假定,此時(shí)參數(shù)檢驗(yàn)的方法就不再適用了。
非參數(shù)檢驗(yàn)正是一類基于這種考慮,在總體方差未知或知道甚少的情況下,利用樣本數(shù)據(jù)對(duì)總體分布形態(tài)等進(jìn)行推斷的方法。由于非參數(shù)檢驗(yàn)方法在推斷過程中不涉及有關(guān)總體分布的參數(shù),因而得名為“非參數(shù)”檢驗(yàn)。
---------------------
投資更加優(yōu)秀的自己?? ~如果滿意答疑可【采納】,仍有疑問可【追問】,您的聲音是我們前進(jìn)的源動(dòng)力,祝您生活與學(xué)習(xí)愉快!~
